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ABSTRACT

Existence and uniqueness of weak solutions to a nonlinear beam equation is es-
tablished under relaxed assumptions (locally Lipschitz plus affine domination)
on the nonlinearity in the stiffness constitutive law. The results provide alterna-
tives to previous theories requiring rather stringent monotonicity assumptions.
The techniques and arguments are applicable to a large class of nonlinear second
order (in time) partial differential equation systems.
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1 Introduction
In this note we consider the nonlinear partial differential equation

Wyt + K1 Wagge + KoWiggzzr = [9(Weg)l e + 1 (1.1)
with boundary and initial conditions given by
we(t,0) = w(t,0) =0, wy(t,1) =w(t,1) =0, 1.2)
w(0,+) = wo € HZ(0,1), w(0,-) = wy € L*0,1).

The problem (1.1)-(1.2) with a monotone function g was studied in [2] where the exis-
tence and uniqueness of global weak solutions were established. These results were extended
in [3] to a general second order evolution system with a monotone nonlinearity. The goal
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of this paper is to prove existence and uniqueness of weak solutions for (1.1)-(1.2) where
the nonlinear function ¢ satisfies only a local Lipschitz condition.

This paper is organized as follows. In Section 2 a local existence-uniqueness result is
established for a locally Lipschitz continuous function g. Section 3 is devoted to the global
existence of weak solutions. Concluding remarks are presented in Section 4.

2 Existence and Uniqueness

We begin this section by letting H = L?(0,1) and V = HZ(0,1), so we have the Gelfand
triple V < H < V* with V* = H=2(0,1). Denote by (-,-) the inner product in H, while
(-, -)v= v stands for the usual duality product. Let ||-||,||- ||y, and || - ||y~ denote the norms
of the spaces H, V, and V*, respectively. Assume that the parameters in (1.1)-(1.2) satisfy
the following assumptions:

(Ay) The nonlinear function g satisfies the following local Lipschitz condition: Let B, (0)
denote the ball of radius r centered at 0 in H and for some constant Lp, we have

g (€) — 9(0)|| < L, |[§ — || forall§,0 € B,(0). (2.3)

(Ay) The forcing term f satisfies

feL*0,T;V"). (2.4)

We define the space of solutions to be
UWO,T) = {ulu € L*(0,T;V),u; € L*(0,T; V), uy € L*(0,T;V*)}

with norm

[l fugo,r) = (||u||i2(0,T;V) + HutH%Q(O,T;V) + ||utt‘|i2(0,T;v*))l/2-

We now define the concept of a weak solution to the problem (1.1)-(1.2).

Definition 2.1 We say that a function w € U(0,T) is a weak solution of (1.1)-(1.2) if it
satisfies

<wtt (t), ¢>V*,V + K1 <www (t), ¢ww> + Ko <wtacac (t), ¢ww>

= <g(wwx(t))a ¢zm> + <f(t)a ¢>V*,V; V¢ € V

(2.5)

and

w(O) =Wy € ‘/’ wt(O) =w; € H. (26)



Let P be the Hilbert space radial retraction onto the ball (in H) of radius 1 centered at
Wogg- Define §(&) = g(PE). Note that from (Ay) it can be seen that § satisfies the following
global Lipschitz condition:

19 (€) = 9(o)l| < Ly g, [|1PE — Pol|
< 2LB 4 jug,, 1 1€ = 7] (2.7)
= L|[§ - o, for all §,0 € H.
Furthermore, from (2.7) it follows that for any £ € H
g < Lligll+C (2.8)
for some C > 0 depending only on wy,, and g. Now, consider the following problem:
Wyt + K1 Wassa + F2Wisser = [§(Wez)]pe + [, (2.9)

with boundary and initial conditions given by

wy(t,0) = w(t,0) =0, wy(t,1) =w(t,1) =0, (2.10)
w(0,-) = wy € HZ(0,1), w(0,-) =w;, € L*(0,1).

Concerning (2.9)-(2.10) we develop a Galerkin approximation similar to those used in [4, 5].
Let {1;};2, be any linearly independent total subset of V. For each m, let

V™ = span{¢1, ..., ¥m}

and let wi*, w® € V™ be chosen so that wi* — wg in V', w™ — w; in H as m — oo. For each
m we define an approximate solution to the problem (2.9)-(2.10) by w™ (t) = > .-, C/™(t)4,
where w™ is the unique solution to the m- dimensional system

(wir (1), ¥i) u + K1 {Wey (D), Yiwz) + Ko(Wigg (1), Yjua) (2.11)
= <g(wgzlc(t))’¢7zz> + <f(t)7wj>V*,V: .7 = 1727--->m; .

with initial conditions
w™(0) = wy', wy'(0) = wi. (2.12)

Using arguments in the spirit of those used in [4, 5], we now establish an a priori bound
for this approximation. Multiply (2.11) by £C7(t) and summing up over j we obtain

(wi (8), wi (0)) i + F1 (Wi (1), wigy (1)) + oWz, (), wig, (1))
= (9w (1)), wizy (£)) + (f(2), wi* (E))v-,v-



Hence,

S IO + 5 O] + r o1

= (9(wi; (1 )),wm(t» +(F @), wi () v v

Upon integrating this equality we obtain

t
2 2 2 2 2
[[wi* (O + £1 [Jwz (1) +2/~’~2/ [ (NII” dm = ||wi*||” + 1 [|wiz, ]
(2.13)

+2 [ ot (), e +2 [ 45007y

Now, using the assumption (Ay), the fourth term on the right side of (2.13) can be bounded
as follows:

/ (), 0 (7)) < 6 / Jurm, (I dr -+ + / If(r

for any 6 > 0. Similarly, the third term on the right side of (2.13) satisfies the following
estimate:

2 / (Gl (7)), wr, (r)ydr < / a(wm ()] ™, (7)]] dr

V*

IN

/0 (L Jwg ()] + C) lwye (T dr

L2 t t
L / o ()2 dr + 6 / ()2 dr
5 )y .
1 t t
+ —/(0)2d7+<5/ ™ ()2 dr.
6 0 0

t 2 t
2 2 2 3L 2 2
[ DI + 51 [lwze @ +f€2/ lrse (D7 dr < == [ Nlwze (D" dr + Jlu?]
0 0

3 3
m |2 2 2
+ K1 ||w0zz|| + K)_QC T+ H_Z ||f||L2(0,T;V*) :

IN

Now choose § = %/{2. Then

Recalling that wi* — wp in V, w® = w; in H as m — oo, applying Gronwall inequality we
obtain that lw™ (#)||” is bounded. Using this fact we conclude that there exists a positive
constant C' independent of m such that

t
[y @)1 + sy [l (t)||2+f€2/0 [} (T)]” dr < C. (2.14)

We now establish the following theorem. We remark that arguments used to prove Theorem
2.1. below are similar to those used in the linear system case in [6] and the globally Lipschitz
nonlinearity case in [7]. However, for completeness we give the necessary details.
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Theorem 2.1 The problem (2.9)-(2.10) has a unique weak solution.

Proof. From (2.14) it easily follows (see [2, 3]) that there exits a subsequence {w™*}
of {w™} and limit functions w € W2(0,7T;V) and g € L?(0,T; H) such that

w™ — w weakly in W (0, T;V) (2.15)
g(w™(t)) — g(t) weakly in L*(0,T; H). (2.16)

Arguing as in [2, 4] we can show that for any ¢ € V, the limit function satisfies

<wtt(t)a ¢> + K1 <w:c:c(t)a ¢ww> + ’{2<wtww(t)a ¢$w> = <§(t), ¢ww> + <f(t): ¢>V*,Va (217)

with w(0) = wg and w; (0) = w;. Hence, to show that the limit function is indeed a weak
solution of (2.9)-(2.10), it is left to show that g(¢t) = § (w.,(¢)) for a.e. ¢ € [0,T]. Recall
that we already proved that g(w™) — g weakly in L?(0,T; H) (along a subsequence). Our
next goal is to show that this Weak convergence is actually a strong one.

Following ideas in [6, page 569], we let z™(t) = w™(t) — w(t), where w™ is the unique
solution to the finite dimensional system (2.11)-(2.12) and w is the limit function which
solves the linear problem (2.17) with w(0) = wy and w(0) = w;. Now, using w{"* and w;
as test functions in (2.11) and (2.17), respectively and integrating as before, we arrive at
the equation:

t
12" @)1 + &1 [l255 ()] + 2%2/ 275 (NI d7 = Jlwi® — wi|l* + 1 |wiy — wosal’
0

+2 / (@™ (7)) = G (7)), 27 ())dr +2 / (F (1), 20 (e + X (1), (218)

where
X ) = 2 [~ 0 (0) — 5020, 0E0) — 26 [ Wralr), 0 (i
b '+ 6 e i) + [ G, wran ()i
+ [+ 2 [0 whi]
The third term on the right side of (2.18) satisfies the following estimates:
2 [ (@) - 5. 2 Ddr = 2 [ G - fumalr)) 2 (D
+ 2 [ {glune(r)) = 0, 5 ()i



and

&>
NP

2 | {(9(w(7)) = §(wee(7))), 275, (T))dT - < /Ilg Wi (7)) = §(Waa (7)) || 275, (T)] d7

0

< 9 / L™ (7) — waa()|| 1220 (7)|| dr

L2 t 9 t )
< 5 [ lmerdr s [l
0 0

From this estimate and (2.18) we obtain the following inequality:

2
1 O + w12 (I + (26 — / e, (P dr < 2 / |z ()2 dr + o} — wn |

/0 (§(was (1)) — G (1) , 27, (r))dr

+k1 || wigs — wOww” +2

t

[ u@ @y var

L2 m m m
= 7/ 25 (DI d7 + [[wi® = will® + k1 [wGey = wosall® + Y ()] + [ X (B)]
0

+2 + | Xm(2)]

where

Yinlt) = 2 / (§(wss (7)) = G (1), 20 (7))dr| +2 / (), 2 () v

Letting m = my, we clearly have ||w™ — wy||” + &1 || Wi — weee|” — 0. We note that
by 2" = wi™* —w; — 0 weakly in L?(0,7T;V) we obtain that Y,,(f) — 0 , and also that
Xm(t) — 0 for a.e. t because of the convergences (2.15)-(2.16) and the fact that w satisfies
the integrated form of (2.17) with ¢ = w;. Ignoring the first and the third term on the left
side of the above inequality we see by applying the generalized Gronwall Lemma that for
a.e. t € [0,7], ||z2™ (t)||> — 0. Hence, from the smoothness properties of § inherited from
those guaranteed by (4,) for g, we have that §(w) — §(w) strongly in L?(0,T’; H). Since
g(w™) — g weakly in L?(0,T; H) also, we find that G(wey(t)) = g(t) for a.e. t € [0, 7] and
thus the limit function w is a weak solution to (2.9)-(2.10).

We also note that

6 = (W, Dyey = — /0 wr(7), 6, (7)) dr
- / (8(03a(7)), Baa(r)) + (F (), () T
- / (k1 (W (1), Bua (1)) + Fr(ar (), (7))



is continuous over D(]0,T[;V) equipped with the topology of L?(0,7;V) and thus by
density over L%*(0,T;V). (So wy € L?(0,T;V)* = L?(0,T,V*).) Since we have already
established that w € W2(0,7T;V) we have that w € U(0,7T). Now by [6, Remark 1. p.
555.] we obtain the additional regularity w € C([0,7]; V) and w, € C([0,T]; H).

The uniqueness of solutions can be easily derived. Indeed, assume that w; and w, are
two solutions to our nonlinear problem and define z = w; — wy. Then by calculations
similar to the ones employed above we deduce that for each ¢ € (0,7,

t L2 t
21 + #1 [l 2 (DI + (262 — 5)/0 12700 (T) || d7 < 7/0 1220 (7)I” dr-

Thus dropping the second and the third terms on the left side of the above inequality and
applying the Gronwall Lemma, we easily see that z = 0 and this completes the proof of
Theorem 2.1.

We now prove the existence and uniqueness of weak solutions to our main problem
(1.1)-(1.2):

Theorem 2.2 There exists a T* such that the problem (1.1)-(1.2) has a unique weak so-
lution on the interval [0, T™].

Proof. Since the solution w to the problem (2.9)-(2.10) satisfies wy,(t) is continuous
in ¢ we see that there exists a 7% with 0 < T* < T such that ||wg(t) — woe|| < 1
for all ¢ € [0,7*]. This implies that Pw.,(t) = w.,(t) for all ¢ € [0,77*], and therefore
G(wgz(t)) = g(wg(t)) for all t € [0, T*]. Hence, w solves (1.1)-(1.2) on [0, 7*]. Uniqueness
of solutions follows in the same way as in the proof of Theorem 2.1.

3 Global Existence

We begin this section by pointing out that in the case that g is globally Lipschitz then the
global existence of a unique weak solution is guaranteed by Theorem 2.1. The goal of this
section is to show that global existence holds for a class of locally Lipschitz functions as
well. To this end, we have the following theorem:

Theorem 3.1 Suppose that in addition to (A,) the nonlinear function also satisfies a
boundedness condition:

(4s) lg@Nl < Cilléll + Co, &€ H,
for some constants C1,Cy > 0. Then the weak solution to the problem (1.1)-(1.2) is global.

Proof. Following the same steps as above, we can define Galerkin approximations
w™(t) =Y it C™(t)y; that solve (2.11)-(2.12) with the nonlinear function g instead of g.
By using assumption (A;) we can develop a similar a priori bound:

t
[l N + ko llwgs @I + '*»2/0 [}, (DI dr < C, (3.19)



where C' = C(wq, ws, f,T,Cy,Cs). Thus convergences (2.15)-(2.16) can be established as
above. Additionally, we can argue as in [3, Lemma 5.1 b)] that
wi (t) — wy(t) weakly in H.

We note that the arguments for this are independent of the monotonicity assumptions in
[3] and depend only on the a priori bound of (2.14) and the general Arzela-Ascoli theorem.
Thus by the weak lower semicontinuity of the norm we obtain that

lwar (B < —-C

rxr — 1{1 .

Now the proof can be continued exactly as before, using the locally Lipschitz property of
g in the ball B\/fé(()) in H. Thus we can establish that under the conditions (A4), (4,)

and (Ay) the problem (1.1)-(1.2) has a unique global weak solution.
For an example of a function which is only locally Lipschitz and satisfies (Ap) consider

g(&) = Esin(ef) + C.

4 Concluding Remarks

We observe that the arguments and results of the preceding sections readily extend to the
general second order system

wy + Ayw + Aywy + N g(Nw) = f

w(0) = wg, w(0) = wy,

where A;, A5, N and f satisfy assumptions A1)-A7) of [3]. That is, for the systems of [3]
with Vo = V, (i.e., strong damping) the conditions on ¢ of [3] can be replaced by those
in Section 2 and 3 of this paper. Our current research efforts are focused on using similar
techniques to extend these results to a general system with hysteresis (see [1]). These efforts
will be reported in another paper.

Finally, we comment that the results of this note could be obtained using Picard iterate
arguments in place of the a priori estimates. Indeed, in [1] we combine such arguments
with the a priori estimates of this note in developing the results for systems with hysteresis
(or internal dynamics) investigated in that paper.
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